# Branching ratios of successive emission (up to three) of $C_{2n}^+$ (n = 1–5) fragments in asymmetrical fission processes of $C_{60}^{r+}$ ions (r = 4–6)

S. Martin<sup>1,a</sup>, L. Chen<sup>1</sup>, J. Bernard<sup>1</sup>, R. Brédy<sup>1</sup>, and A. Salmoun<sup>2</sup>

<sup>1</sup> Laboratoire de Spectrométrie Ionique et Moléculaire, Université Lyon 1, UMR 5579, Domaine Scientifique de la Doua, 69622 Villeurbanne Cedex, France

<sup>2</sup> Université Chouaib Doukkali, Département de Physique, Laboratoire IMC, B.P. 20, Eljadida, Maroc

Received 6 September 2004

Published online 13 July 2005 – © EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2005

**Abstract.** Highly charged  $C_{60}$  molecules are produced in collisions between neutral  $C_{60}$  and multiply charged ions within a large range of temperatures. Successive emission of one, two or three light monocharged fragments referred as one-, two- and three-step processes have been observed. The experimental mass branching ratios for the emission of one  $C_{2n}^+$  fragment from  $C_{60}^{6+}$ ,  $C_{60}^{5+}$  and  $C_{60}^{4+}$  ions are compared with the theoretical values using a statistical model. From hotter  $C_{60}^{6+}$  ions, branching ratios for three-step processes have been measured and the data are in good agreement with an estimation using the branching ratios in one-step process.

**PACS.** 36.40.Ei Phase transitions in clusters

### 1 Introduction

Fragmentation of finite size systems is one of the important deexcitation pathways of hot atomic clusters. Recently, special attention has been devoted to the study of fragmentation of highly charged clusters like C<sub>60</sub> or sodium [1,2] and more precisely to the decay via fission reactions by the ejection of charged fragments that has no equivalent process in solid state physics. In this paper, we present a systematic measurement of fission processes of multicharged C<sub>60</sub><sup>4-6+</sup> ions at various excitation energies leading to the successive emission of one, two or three light monocharged fragments with even number of carbon.

## 2 Experimental set-up

Details of the experimental apparatus are given in reference [3]. In brief, neutral C<sub>60</sub> molecules are evaporated in an oven at a temperature of  $\simeq 500$  °C. The neutral C<sub>60</sub> jet crosses perpendicularly a beam of multiply charged ions Ar<sup>8+</sup> delivered by the new nanogan III E.C.R. Electron Cyclotron Resonance source. The charged reaction products (electrons and recoil ions) are extracted by a transverse an electric field. The ionised C<sup>r+</sup><sub>60</sub> molecules and fragments are analyzed according to their size to charge ratio m/q by a time of flight mass spectrometer. The ions

are detected by two M.C.P. Multi Channel Plate and a multianode of 61 pixels linked to 61 individual discriminators. This detector is useful for studying fragmentation processes with a large multiplicity implying the detection of several identical particles (for example: two or three carbon dimmers arriving at the same time). The number "n" of ejected electrons for each event is measured using a semi conductor device placed at the opposite side of the T.O.F. Time Of Flight tube. The outgoing projectile  $Ar^{6+}$  is selected and its signal is used as the common stop trigger in the event-by-event acquisition mode. The r initial charge state of the parent ion of  $C_{60}^{r+}$  can be estimated using the electron number conservation law (r = n + 2). The detection efficiencies of the recoil ions have been estimated to 70% for monocharged light fragments  $(C_2^+, C_4^+, C_6^+, ...)$ , 50% for  $C_{60}^+$  and 65% for multicharged  $C_{60}^+$  ions. The detection efficiency of the ejected electrons is estimated to be close to 100% in this experiment. It allows to deduce that the energy of ejected electrons from the autoionisation processes is lower than 100 eV. Multicoincidence measurements are performed between the outgoing projectile, the number of ejected electrons and the charged fragments of recoil ions. For each hit on the M.C.P. detector, the number of pixels activated by the electron beam outgoing from the second M.C.P. is also recorded. This additional information is used to well separate the multifragmentation process from the asymmetrical fission process. Indeed, the first process leads to the detection of multiple singly

<sup>&</sup>lt;sup>a</sup> e-mail: smartin@univ-lyon1.fr



Fig. 1. Correlated two fragments spectrum associated with the detection of two electrons. The  $C_{40}^{4+}$  parent ions are selected.

charged  $C_n^+$  fragments and each fragment activates mainly only one pixel, while the second process is characterized by the detection of a multicharged fullerene  $C_{60-2n}^{r+}$  that in the average activates at least three pixels. By selecting the number of pixels per hit, it is possible to separate the two processes and to extract special information concerning the minor process. As in the fragmentation of high charge states of parent  $C_{60}$ , the dominant process is the multifragmentation.

### **3** Experimental results

Figures 1–3, represent the correlation spectra for selected events with a number of ejected electrons equal to two, three and four respectively and with only two detected fragments. The additional criteria on the number of activated pixel ( $\geq$ 3) ensured that one of the two fragments is a multicharged fullerene ion. The TOF of the heavy fragment is plotted along the X-axis and that of the light fragment is along the Y-axis.

The fragmentation pattern of  $C_{60}^{4+}$  parent ions (Fig. 1) shows mainly the light even monocharged fragments ( $C_2^+$ ,  $C_4^+$ ,  $C_6^+$ ,  $C_8^+$ ,  $C_{10}^+$ ) in coincidence with  $C_{58}^{3+}$ ,  $C_{56}^{3+}$ ,  $C_{54}^{3+}$ ,  $C_{52}^{3+}$ ,  $C_{50}^{3+}$  ions. The long tail attached to each spot is due to the delayed fragmentation process inside the extraction zone. The  $C_{60-2n}^{4+} - C_{2n}^+$  spots observed in Figure 1 are explained by the backscattering effect of electrons on the semi-conductor detector so that a small contribution of the fragmentation pattern of  $C_{60}^{5+}$  associated to the peak of 3 electrons is found in the spectrum of  $C_{60}^{4+}$  characterized by the peak of 2 electrons (see paper [4] for details). The recoil ion coincidence spectrum



Fig. 2. Same as Figure 1 but with the detection of three electrons. The  $C_{60}^{5+}$  parent ions are selected.



Fig. 3. Same as Figure 1 but with the detection of four electrons. The  $C_{60}^{6+}$  parent ions are selected.

of  $C_{60}^{5+}$  parent ions is shown in Figure 2. The strong  $C_{58}^{4+}-C_2^+$  and  $C_{56}^{4+}-C_4^+$  spots indicate the dominant fission channels. The smaller spots, observed in coincidence with  $C_{60-2n}^{3+}$  ions, are explained coming from two contributions. The first small contribution is attributed to the emission of a doubly charged light fragment and is not discussed in this paper [5]. The main contribution



**Fig. 4.** Branching ratios for the one-step emission  $C_{60}^{r+}$  →  $C_{60-2m}^{(r-1)+} + C_{2m}^+$  as a function of 2m;  $\diamondsuit$ ,  $\triangle$ ) ( $\Box$ ,  $\diamondsuit$ ,  $\triangle$ ) experimental values for  $C_{60}^{6+}$ ,  $C_{60}^{5+}$  and  $C_{60}^{4+}$  ions respectively. ( $\blacksquare$ ,  $\blacklozenge$ ,  $\blacktriangle$ ) theoretical values for  $C_{60}^{6+}$ ,  $C_{60}^{5+}$  and  $C_{60}^{4+}$  ions. Lines are to guide the eye.

is due to the two-step successive fission process where only one monocharged light fragment is detected. In Figure 3, the spectrum of  $C_{60}^{6+}$  parent ions shows two intense spots attributed to the one step emission of  $C_2^+$  or  $C_4^+$ . The spots in coincidence with  $C_{60-2n}^{4+}$  ions are attributed mainly to the two-step successive emission of two light fragments from  $C_{60}^{6+}$  ions. The spots in coincidence with the  $C^{3+}_{60-2n}$  ions are attributed to the contributions of three-step emission. To measure precisely the contributions of such two-step and three-step emission processes, we extracted from the event files the number of events for each channel characterized by the coincidence detection of three ions  $C_{60-2n-2m}^{4+}-C_{2n}^{+}-C_{2m}^{+}$  and four ions  $C_{60-2n-2m-2p}^{4+}-C_{2m}^{+}-C_{2m}^{+}$  (not show here). A special care has been taken to detection efficiency corrections. Details of the analysis will be given in a forthcoming paper. From these measurements, we determined the ratios of one-, two- and three-step successive emission events with respect to the total asymmetrical fission events involving the emission of even fragments to be equal to 58%, 35%and 7% respectively for  $C_{60}^{6+}$  ions. The branching ratios for the one step emission are presented in Figure 4 for  $C_{60}^{4+}$ ,  $C_{60}^{5+}$  and  $C_{60}^{6+}$  ions.

It is noteworthy that the population distributions shift towards lighter fragment  $C_2^+$  as the charge state of the parent  $C_{60}^{r+}$  increases. Similar population distributions have been already reported in paper [6] for  $C_{60}^{9+}-C_{60}^{4+}$  ions prepared in Xe<sup>25+</sup>-C<sub>60</sub> collisions.

Following the paper [6] we have calculated the relative population distribution as a function of the number of carbon atoms of the light fragment for each  $C_{60}^{r+}$  ion (r = 4-6) using a statistical model. The reaction rate constant  $A(E^*)$  is thus given by

$$A(E^*) = n_s \nu_\circ \left(1 - \frac{B}{E^*}\right)^{3m-7}$$



**Fig. 5.** Branching ratios for the two-step asymmetrical fission processes; ( $\Box$ ) experimental values, ( $\triangle$ ) theoretical values  $C_{60}^{r+} \rightarrow C_{60-2m}^{(r-1)+} + C_{2m}^{+} \rightarrow C_{60-2m-2n}^{(r-2)+} + C_{2m}^{+} + C_{2n}^{+}$ .



**Fig. 6.** Branching ratios for the three-step successive emissions; ( $\Box$ ) experimental values, ( $\triangle$ ) theoretical values;  $C_{60}^{r+} \rightarrow C_{60-2m}^{(r-1)+} + C_{2m}^{+} \rightarrow C_{60-2m-2n}^{(r-2)+} + C_{2m}^{+} + C_{2n}^{+} \rightarrow C_{60-2m-2n-2p}^{(r-3)+} + C_{2m}^{+} + C_{2n}^{+} + C_{2n}^{+} + C_{2p}^{+}$ .

where  $n_s$ , the degeneracy factor, is the number of atoms on the surface of the  $C_m$  fullerene,  $n_s = m$ , and  $\nu_{\circ} = 2.7 \times 10^{-13} \text{ s}^{-1}$  is the Debye frequency of  $C_{60}$ .

The fission barrier B for each reaction channel  $C_{60}^{r+} \rightarrow C_{60-2m}^{(r-1)+} + C_{2m}^{+}$  has been estimated using the atomization energy [7] and the ionisation potential of  $C_p$ . For one step emission processes, the temperature of  $C_{60}^{r+}$  is estimated to about 2600 K. A slight variation of temperature around this value does not change the branching ratios for different charge of  $C_{60}^{r+}$  (r = 4-6). The theoretical values are compared to the experimental results in Figure 4. The general tendencies are well reproduced showing that the statistical model gives a good description for the asymmetrical fission of  $C_{60}^{r+}$  ions.

For the emission of two or three fragments, the temperatures have been estimated to 3500 K and 4300 K respectively for the  $C_{60}^{6+}$  ions. In Figures 5 and 6, the branching ratios for two- and three-step emission for  $C_{60}^{6+}$  ions are compared with the estimations using the branching ratios for one-step fission of  $C_{60}^{6+}$ ,  $C_{60}^{5+}$  and  $C_{60}^{4+}$  ions (Fig. 4). We have taken the assumption that the branching ratio for the emission of a given fragment does not depend too much on the size of the fullerene. A rather good agreement between the experimental data and the model is obtained.

# **4** Conclusion

We have measured the successive emission of light fragments from highly charged  $C_{60}$ . The branching ratios have been relatively well reproduced using a simple assumption. In future studies, the weaker channels involving the emission of odd fragments should be taken into account.

### References

- 1. T.P. Martin et al., Chem. Phys. Lett. 196, 113 (1992)
- 2. F. Chandezon et al., Phys. Rev. Lett. 87, 153402 (2001)
- 3. L. Chen et al., Phys. Rev. A 59, 2827 (1999)
- 4. F. Aumayr et al., App. Surf. Sci. 47, 139 (1991)
- 5. L. Chen et al., Europhys. Lett. 58, 375 (2002)
- 6. S. Martin et al., Phys. Rev. A 66, 063201 (2002)
- 7. E.E.B. Campbell et al., Chem. Phys. Lett. 253, 261 (1996)